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Abstract

In this paper we consider basic elements of so-called pasture territory and some related

extremal[1,2,3] and game problems. This work may be considered as continuation of the

paper [1] where the extremal problems for single herdsman are investigated. We describe

the pasture surface as a graph of a piecewise smooth and continuous function f(x, y) defined

on a closed, connected domain of a plane. Considering extremal and non-cooperative game

problems are related with finding the optimal location for the nomadic residences, when the

exploiting pasture territory for herdsman has grass mass as much as possible[1,2].

Keywords: Pasture territory, Herbage density, piecewise smoothness, non-negative mea-

sure, watering-place, closure of a set, upper semi-continuity, convexity.
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1 Introduction

The world civilization is divided into two forms: settled and nomadic. While the set-

tled civilization is well studied and modeled mathematically, the study of the nomadic

civilization is practically ignored and less. Therefore, our work may be regarded as

new in mathematical modeling. The nomadic civilization is closely connected with

the nature, and ecological and economical problems of nomads are regulated simul-

taneously.

Mongolia is one of the few countries where the nomadic civilization still exists in

classical form. Fifty percent of the population is involved somehow in stock nomadic

breeding. Since Mongolian has extreme climate, it is very important for nomads

to determine optimal choices for roaming places, i.e., the location for the nomadic

residence depending on the seasons. During the last 60 years, the livestock sector of

Mongolia past two historical periods: totalitarian period, in which all problems are

solved in government interest and transitional period of privatization, in which the

nomads solve any problems their own way.

This research was supported by the Russian-Mongolian joint grant "Economic

and geometry extremal problems on equipped surfaces".

In this section we define basic elements of the pasture surface. Let K ⊆ <2 be

a closure of an open and connected set with a piecewise smooth boundary. Suppose

that K consists of a union of a finite number of domains Ki with piecewise smooth

boundaries. Then the pasture surface is defined as a graph of a continuous function

f : K → R such that f(x, y) is twice differentiable on the interior of Ki for any i.

We define the watering place for the herd as a closure of a set W ⊆ f(K) with

an empty interior. That means the pasture surface does not contain the interior of

the water resource[1,2,3].

We denote the closed set Q ⊆ f(K) as possible locations for the nomadic residence.
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Theorem 1. Between any two points in f(K), there exists a curve of minimal length

(minimal curve[5]) in f(K) connecting them.

Proof. Suppose O1, O2 ∈ f(K), O1 6= O2. From the connectedness of K, it follows

that the points f−1(O1) and f−1(O2) can be connected by a rectifiable planar curve

l. Then f(l) is also a rectifiable surface curve with a length d. Let us construct a

planar disk B(f−1(O1), d) := {z ∈ <2| ‖z − f−1(O1)‖2 ≤ d} with a center f−1(O1)

and a radius d. Then the graph f(B(f−1(O1), d) ∩ K) is a complete metric space

with the surface metric. This space, evidently, contains the curve f(l) and the point

O2. Hence, by the theorem 3 (P.112) of [4], there exists a minimal surface curve

connecting O1 and O2.

If the nomadic residence is located at the point O ∈ Q, we define the maximal

possible exploiting area Ar(O, W̄ ) ⊆ f(K) as the union of all points M ∈ f(K)

such that there exists a loop l ⊆ f(K) of length no more than 2r passing through

the points M,O and some point N ∈ W . This means, for a day, while grazing and

watering one’s livestock, the herdsman must pass the distance no more than 2r. The

r > 0 is called the radius of grazing. It is clear that Ar(O, W̄ ) is a connected compact

set[1,2].

Pasture surface f(K) is a complete metric space, where the distance ρ1(M,N)

for the points M,N ∈ f(K) is equal to the length of a minimal curve connecting

them. This metric ρ1 is called the surface metric. Any minimal curve consists of

possible pieces of the boundary ∂f(K) and some geodesics.

Surface ellipse Er(O1, O2) with focuses O1, O2 ∈ f(K) is a compact set satisfying

ρ1(O1,M) + ρ1(O1, O2) + ρ1(M, O2) ≤ 2r, ∀M ∈ Er(O1, O2).

Each shoot of the boundary ∂Er(O1, O2) is a closed curve.

When ρ1(O1, O2) = r, int Er(O1, O2) = ∅.
When ρ1(O1, O2) < r, int Er(O1, O2) 6= ∅.
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We denote by Wr(O) the subset of W such that

Wr(O) := {N ∈ W | ρ1(O, N) ≤ r}.

Assume that ρ1(O, N) < r for any N ∈ Wr(O). Then the next theorem holds.

Theorem 2. The boundary ∂(int Ar(O, W̄ )) is a union of a finite number of closed,

rectifiable curves.

Proof. Since

Ar(O, W̄ ) =
⋃

N∈Wr(O)

Er(O,N),

the boundary ξ(0) = ∂Ar(O, W̄ ) consists of ∂(int Ar(O, W̄ )) and some possible

shoots. It is clear that intAr(O, W̄ ) is a union of a family of ellipses Er(O, N), N ∈
Wr(O), where intEr(O, N) = Er(O, N). Since intAr(O, W̄ ) is a compact set, we

can choose some ellipses Er(O, N1), ..., Er(O, Nk) covering intAr(O, W̄ ) in union.

As each ∂Er(O, Ni), i = 1, k is a union of a finite number of closed and rectifiable

curves, ∂(int Ar(O, W̄ )) also is a union of a finite number of closed and rectifiable

curves.

Corollary 1. When there exists only a finite number of points Ni ∈ Wr(O) satisfying

ρ1(O, Ni) = r and total length of the shoots of ∂Ar(O, W̄ ) is finite, the boundary

ξ(O) = ∂Ar(O, W̄ ) has a finite length.

Herbage density is a non-negative measure µ(K) such that for any compact set

M ⊆ K,

µ(M) < ∞

and the charge Z(A) generated by bounded function g(x, y) =
√

1 + f2
x + f2

y :

Z(A) =
∫

A

√
1 + f2

x + f2
y dµ
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Proof. Consider the sequence ξn =
k⋃

i=1
ξi
n, where each sequence ξi

n converges to ξi

with respect to the above metric in Ξ. If we denote

S(ηn) = sup
i≥n

S(ξi) with inf
ξj∈

⋃
i≥n

ξi

ρmax(ηn, ξj) = 0,

ρmax(ξ1, ξ2) = max
1≤i≤k

ρ(ξi
1, ξ

i
2),

then we have

S(ηn) = S(ξ) +
∫

Πηn\(Πηn∩Πξ)

√
1 + f2

x + f2
y dµ−

∫

Πξ\(Πξ0
∩Πξ)

√
1 + f2

x + f2
y dµ .

When n goes to infinity the first integral tends to zero, but the second integral tends

to -µ(ξ0), where ξ0 is a piece of the curve ξ. Therefore, S(ξ) ≥ lim
n→∞S(ξn) and the

lemma is proved.

For any O ∈ f(K), we introduce a notation Op = f−1(O).

Theorem 3. Function W (O) (respectively W (Op)) given in (1) is upper semi-

continuous on f(K) (respectively K).

Proof. Let Op
n → Op be a sequence in K. Then the sequence On = f(Op

n) also tends

to O in f(K). Suppose that ξn is a boundary of Ar(On, W̄ ) consisting of some k

closed continuous curves. It is clear that On → O (Op
n → Op) implies ξn → ξ. By

previous lemma, the function W (O) (W (Op)) is also upper semi-continuous.

Corollary 2. If Q(f−1(Q)) is compact, then the problem (1) has a solution on

Q(f−1(Q)).

Now we consider the problem of locating optimally residences for L herdsmen.

The traditional pasture selection method of mongols, indeed, is very much alike

non-cooperative games.
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We will consider the case when nomads are using the pasture territory area f(K).

For simplicity, assume that every i-th stock nomadic-breeding has finite points Oi
si

,

1 ≤ si ≤ ki} for residence (ger) location. If his residence is located at point Qi
si

,

maximal pasture territory is Ar(Qi
si

, W̄ ) ⊆ f(K). We will consider all systems of

{1s1 , . . . , LsL}, where 1 ≤ si ≤ ki. The number of family {s1, . . . , sL} is equal to

k1 × . . . × kL. For fixed s1, . . . , sL we define vector q = (q1, . . . , qL), where qi is

equal to either 0 or 1. If qi = 1, then the pasture territory Ar(Oi
si

, W̄ ) consists of

intersection subsets, the number of them is equal to 2L−1. The number of elements

of intersection
⋂

j:qj=1

Ar(Oj
sj

, W̄ ) is li(q) =
L∑

j=1

qj .

Suppose that every herdsman has N number of animals. Assume that i-th herdsman

has mixed strategy

xi =
(
xi

1, . . . , x
i
ki

)
∣∣

ki∑

p=1

xi
p = 1, xi

p ≥ 0,

where xi
p is the probability of choosing Oi

p, p = 1, . . . , ki. Then the usable weighted-

mean pasture area for i-th herdsman, i.e. payoff of i-th player is

Wi (x1, . . . , xL) =
∑

(s1,...,sL)

L∏

i=1

xi
si

∑

(q1,...,qL)

1
li(q)

∫

⋂
j:qj=1

Ar(Oj
sj

,W̄ )

dµ. (2)

Therefore, the Nash equilibrium (x∗1, . . . , x
∗
L) is defined as

Wi(x∗1, . . . , x
∗
L) ≥ Wi(x∗1, . . . , xi, . . . , x

∗
L), xi ∈ Xi

for any i ∈ 1, L, where Xi set of mixed strategies of i-th herdsman.

Theorem 4. Non-cooperative game problem defined by (2) always has a Nash equi-

librium.
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Proof. Each function Wi(x1, . . . , xN ) is continuous in xi for fixed L − 1 arguments

of xj , j 6= i. And Xi is a (ki − 1) dimensional simplex,therefore, it is convex and

compact. Hence the theorem is proved[8].

3 Some illustrative examples

In this section we assume that f is a linear function. For simplicity, we assume that

f(K) = R2, W consists from a finite number of wells and the grass cover is uniformly

distributed. Also suppose that r = 1 and the distance between ger and the nearest

well is less than 1. We use mixed strategies and Nash equilibrium[8] for the optimal

mixed strategies of considering games.

A. Two herdsmen, two wells. Assume that the distance between two fixed wells

is equal to 2a(0 < a < 1) and every herdsman has right to place his ger near any

one of the wells. Suppose that the probability of ger location for first herdsman near

first well is 0 ≤ x ≤ 1 , but the probability of ger location for second herdsman near

second well is 0 ≤ y ≤ 1. Then we have a bimatrix game and we denote the pure

strategy for ger locating and no ger locating by 1 and 0, respectively. Then the next

4 game situations of pure strategies hold: (1, 1), (1, 0), (0, 1), (0, 0), The goal of every

herdsman is to maximize his weighted-mean pasture area as much as possible. This

is symmetric game and so it is sufficient to consider only the payoff function of the

first player.

F1(x, y) = C(a)xy +
π

2
x(1− y) +

π

2
(1− x)y + [π − C(a)(1− x)(1− y)]

= (C(a)− π

2
)(2y − 1)x− (

3π

2
− C(a))y + C(a),

where C(a) = π − (arccos a − a
√

1− a2). For the payoff function of second player

F2(x, y), we need to interchange x and y in above formula. Finding the maximum

value of F1(x, y) in x and the maximum value of F2(x, y) in y, we find the necessary

conditions for Nash equilibriums:
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x∗ =





1, y∗ > 1
2 ,

[0,1], y∗ = 1
2 ,

0, y∗ < 1
2 ,

y∗ =





1, x∗ > 1
2 ,

[0,1], x∗ = 1
2 ,

0, x∗ < 1
2 .

Hence the Nash equilibriums are (1, 1), (0, 0), (1
2 , 1

2).

B. Two herdsmen and one well. let the distances from two fixed residence places

to well satisfy 0 < a < 1. Assume that the first player has two pure strategies: to

place at first place or near well and second player has two pure strategies: to place

at second place or near well. Suppose that the probability of the first herdsman’s ger

location being at first place is 0 ≤ x ≤ 1 , but the probability of second herdsman’s

ger location being at second place is 0 ≤ y ≤ 1. Since the ellipse area is π
√

1− a,

the playoff for the first player is defined as follows:

F1(x, y) =(π
√

1− a− S(a))xy +
1
2
π
√

1− a(1− y)x + π(1− 1
2
√

1− a)(1− x)y

+
1
2
π(1− x)(1− y)

=[(π
√

1− a− 1
2
S(a)− π

2
)y +

1
2
π
√

1− a− 1
2
π]x +

1
2
π +

π

2
(1−√1− a)y.

Where S(a)− is the area of intersection of two ellipses. By interchanging x and y,

we obtain the formula for F2(x, y). Since

π
√

1− a− 1
2
S(a)− π

2
< 0

and
1
2
π
√

1− a− 1
2
π < 0,

(0, 0) is the unique Nash equilibrium of this game.

C. Three herdsmen, tree wells. Suppose that vertices of equilateral triangle are

located at wells and BA = AC = BC = a < 2. Assume that the first player has

two pure strategies: to place at points A and B , the second player has two pure

strategies: to place at points B and C and the third player has two pure strategies:
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to place at points C and A . Suppose that the probability of first herdsman’s ger

location being at A is 0 ≤ x ≤ 1 , but the probability of second herdsman’s ger

location being at B is 0 ≤ y ≤ 1 and the probability of third herdsman’s ger location

being at C is 0 ≤ z ≤ 1. Let S(a) be the area of intersection of three circles with

centers at A,B and C of unit radius. We have

F1(x, y, z) =
(

1
3
S(a) + C(a)

)
xyz +

(
π

3
+

1
6
C(a)

)
xy(1− z)

+
(

π

3
+

2
3
C(a)

)
x(1− y)z

+
(

π

3
+

1
6
C(a)

)
(1− x)yz +

1
6
C(a)(1− x)y(1− z)

+
(

π

3
+

1
6
C(a)

)
x(1− y)(1− z) +

(
π

3
+

2
3
C(a)

)
(1− x)(1− y)z

+
(

1
3
S(a) + C(a)

)
(1− x)(1− y)(1− z)

=
(
−π

3
+

1
3
S(a) +

5
6
C(a)

)
(y + z − 1) + Q(y, z).

By interchanging x and y in this formula we obtain F2(x, y, z), and by interchanging

x and z we obtain F3(x, y, z).

Finding the maximum values of F1(x, y, z),F2(x, y, z),F3(x, y, z) in arguments x, y, z,

respectively we will find the necessary conditions for all Nash equilibriums. Since

the inequality

−π
3 + 1

3S(a) + 5
6C(a) > 0 is always satisfied, for a Nash equilibrium (x∗, y∗, z∗) we

have:

x∗ =





1, y∗ + z∗ > 1,

[0,1], y∗ + z∗ = 1,

0, y∗ + z∗ < 1.

y∗ =





1, x∗ + z∗ > 1,

[0,1], x∗ + z∗ = 1,

0, x∗ + z∗ < 1.

z∗ =





1, x∗ + y∗ > 1,

[0,1], x∗ + y∗ = 1,

0, x∗ + y∗ < 1.

Hence we have three Nash equilibriums: (1, 1, 1),
(

1
2
,
1
2
,
1
2

)
and (0, 0, 0).
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4 Addition

In this section we will consider some problems linked with form of utility function,

set of residence location and situation in which a herdsman may have more than one

residences. Assume that we have a pasture territory M ∈ f(K) and the number of

cattle grazing on this territory is N . Then the grass biomass per animal is equal to

G =
1
N

∫

M

dµ.

We assume that the utility function W (G) is:

W (G) =





∫
M

dµ, if G ≤ Gcr,

NGcr, if G > Gcr,

where Gcr > 0 fixed number. Consequently, the formula (2) of payoff function is

for G ≤ Gcr, I.,e. for sufficiently large N .

In fact, when the number of herdsmen L > 1 and livestock number of i−th
herdsman is equal to Ni, 1 ≤ i ≤ L, and in place of (2), the next formula for the

payoff function holds.

Wi (x1, . . . , xL) =
∑

(s1,...,sL)

L∏

i=1

xi
si

∑

(q1,...,qL)

Fi(q),

where

Fi(q) =





NiF̄i(q), if F̄i(q) ≤ Gcr,

NiGcr, if F̄i(q) > Gcr
.

Where is used the next designation:

F̄i(q) =
1

L∑
j=1

qjNj

∫

⋂
j:qj=1

Ar(Oj
sj

,W̄ )

dµ

Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com



Mongolian Mathematical Journal 22

In general case a herdsman may have any closed subset Q ⊆ f(K) for his residence

locations.

Now we will consider again the case L = 1. Let a herdsman have p residences and

he must choose location points Oi ∈ Q, i ∈ ¯1, p and allocate the livestock number:

N =
p∑

1

Ni

as well as. For example, we will consider next problems, where p = 2.

Let M be a pasture region which is a convex and closed polygon in a plane and

M = W̄ = Q, dM ≥ 2r, where dM is the measure of length of a segment in M with

maximal length. In addition assume that,

2πr2
M

N
≤ Gcr (3)

and the grass cover is uniformly distributed on M. A herdsman’s goal is choosing

O1 ∈ Q, O2 ∈ Q, N1(N2 = N −N1.)

Problem 1. To find O∗
1, O

∗
2, N

∗
1 such that

S(B(O∗
1, r) ∩M) + S(B(O∗

2, r) ∩M) = max
O1,O2∈M,N1∈(0,N)

2∑

i=1

S(B(Oi, r) ∩M),

where intB(O1, r) ∩ intB(O2, r) = ∅, O1, O2 ∈ M and S(D) is the area of domain

D.

Problem 2. To find O∗
1, O

∗
2, N

∗
1 such that

π(r∗1)
2 + π(r∗2)

2 ≥ π(r1)
2 + π(r2)

2,

where int B(O1, r1) ∩ int B(O2, r2) = ∅, B(Oi, ri) ⊆ M, i = 1, 2.

Lemma 2. Problems 1 and 2 always have a solution.
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Proof. The condition (3) guarantees that the utility function for the herdsman over

B(Oi, r) ∩M for Problem 1 is ∫

B(Oi,r)∩M

dµ

and the utility function over B(Oi, ri) for Problem 2 is
∫

B(Oi,ri)

dµ = πr2
i .

In fact, if for a distribution N =
2∑

i=1
Ni of livestock numbers, we have

1
Ni

∫

B(Oi,r)∩M

dµ > Gcr and
1
Ni

∫

B(Oi,r)

dµ > Gcr,

then by increasing Ni(therefore, simultaneously increasing corresponding sum of util-

ity functions), we get

1
Ni

∫

B(Oi,r)∩M

dµ ≤ Gcr and
1
Ni

∫

B(Oi,r)

dµ ≤ Gcr,

respectively.

In future, we assume that Ni is fixed. Now we describe the mathematical for-

malization of above two problems. First, we will consider the Problem 1. Assume

that the convex polygon M is constructed as an intersection of nonnegative sides of

lines: aix + biy + ci = 0, i = 1, . . . , n. Let (x1, y1) and (x2, y2) be the coordinates

of points O1 and O2, respectively. Let Ai, i = 1, . . . , n be the vertexes of polygon

and si = AiAi+1, i = 1, . . . , n + 1, where An+1 = A1. We denote by rj,i, j = 1, 2

the distance from point Oj to side si. Then the areas S(B(Oj , r) ∩M), j = 1, 2 for

Problem 1 are equal to

1
2

mj∑

p=1

rj,kp ·
(√

(min(r,OjAkp))2 − r2
j,kp

+
√

(min(r,OjAkp+1))2 − r2
j,kp

)
+
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